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Markers’ report
Olympiad marking
Both candidates and their teachers will find it helpful to know something of the general
principles involved in marking Olympiad-type papers. These preliminary paragraphs therefore
serve as an exposition of the ‘philosophy’ which has guided both the setting and marking of all
such papers at all age levels, both nationally and internationally.

What we are looking for is full solutions to problems. This involves identifying a suitable
strategy, explaining why your strategy solves the problem, and then carrying it out to produce
an answer or prove the required result. In marking each question, we look at the solution
synoptically and decide whether the candidate has a viable overall strategy or not. An answer
which is essentially a solution will be awarded near maximum credit, with marks deducted for
errors of calculation, flaws in logic, omission of cases or technical faults. On the other hand,
an answer which does not present a complete argument is marked on a ‘0 plus’ basis; a small
number of marks (often capped at 3) might be awarded for particular cases or insights.

This approach is therefore rather different from what happens in public examinations such as
GCSE, AS and A level, where credit is given for the ability to carry out individual techniques
regardless of how these techniques fit into a protracted argument. It is therefore important that
candidates taking Olympiad papers realise the importance of the comment in the rubric about
trying to finish whole questions rather than attempting lots of disconnected parts.
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General comments
Candidates engaged very well with this year’s paper, and the majority made substantial progress
on at least two of the problems. It was encouraging to see a number scoring highly on question
3, which hopefully served as a reminder that BMO1 geometry problems often do not require
much beyond GCSE circle theorems (and their converses) together with some ingenuity. In
questions 4 and 5 many candidates found correct numerical answers, but failed to adequately
explain their reasoning. In question 4 there was often a lack of precision when using the
word ‘behind’ (does it mean directly behind or somewhere behind?), while in question 5 many
candidates showed that multiples of 28 gave perfect arrangements without realising that they
needed to show that no other numbers did. Question 6 was arguably as hard as it has ever been,
and only the very best candidates came close to solving it.

A few scripts suffered from a lack of words explaining where various symbolic expressions
came from, but these were reassuringly rare. Many more scripts gave copious discursive
commentary, and would have benefited from breaking up their prose into separate claims and
proofs, and by being a little more concise in places.

The 2019 BMO1 paper was sat by 1475 candidates. The scripts were marked in Cambridge on
7th and 8th December by a team of Oscar Arevalo, Eszter Backhausz, Tibor Backhausz, Connie
Bambridge-Sutton, Sam Bealing, Emily Beatty, Jonathan Beckett, Cathy Beckett, Phillip
Beckett, Jamie Bell, Lex Betts, Robin Bhattacharyya, Tom Bowler, Andrew Carlotti, Philip
Coggins, Arthur Conmy, James Cranch, Alex Darby, Ronan Flatley, Richard Freeland, Tony
Gardiner, James Gazet, Daniel Griller, Alex Gunning, Stuart Haring, Tim Hennock, Liam Hill,
Ina Hughes, Ian Jackson, Shavindra Jayasekera, Vesna Kadelburg, Hadi Khan, Patricia King,
Warren Li, Harry Metrebian, Joseph Myers, Eve Pound, Melissa Quail, Zarko Randelovic,
Dominic Rowland, Amit Shah, Jerome Watson, Patrick Winter, Harvey Yau and Renzhi Zhou.

The problems were proposed by Nick MacKinnon, Tom Bowler, Daniel Griller, Daniel Griller,
Dominic Rowland and Sam Bealing respectively.

In addition to the written solutions in this report, video solutions can be found here.
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Mark distribution
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Candidates with scores ≥ 40 were invited to sit BMO2.
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Question 1

Show that there are at least three prime numbers p less than 200 for which p + 2, p + 6,
p + 8 and p + 12 are all prime. Show also that there is only one prime number q for which
q + 2, q + 6, q + 8, q + 12 and q + 14 are all prime.

Solution

For the first part, p = 5, 11 and 101 all work, since all the numbers

5, 7, 11, 13, 17
11, 13, 17, 19, 23

101, 103, 107, 109, 113

are all prime.

For the second part, q = 5 works, since the first sequence above can be continued on with 19.
This is the only possibility. Clearly q , 2, and the odd numbers q, q + 12, q + 14, q + 6 and
q + 8 cover all possible odd last digits, so one must end in a 5. Thus one of these numbers
must be equal to 5, since they are all prime, and the only possibility is that q = 5. (If one uses
instead the list q, q + 2, q + 14, q + 6, q + 8, one needs to rule out the possibility that q + 2 = 5
by, for example, observing that if q + 2 = 5, then q + 6 = 9 is not prime.)

Markers’ comments

The vast majority of candidates attempted this question, and most made good progress. For the
first part the three values of p given in the solution are the only valid ones less than 200 (the
next is p = 1481) and a number of candidates provided additional incorrect values of p. In
particular the following numbers were often mistaken for primes: 91 = 7 × 13, 119 = 7 × 17,
143 = 11 × 13, 161 = 7 × 23, 169 = 13 × 13 and 203 = 7 × 19.

In the second part many candidates made sensible use of last digits or arithmetic modulo 5.
These candidates generally went on to solve the problem. A common minor error was to assert
that some number ending in 5 cannot be prime, forgetting 5 itself. This happened most often
with the prime q + 2, meaning that some candidates didn’t successfully eliminate the single
possibility that q = 3. The most common major error was to assume that the condition p < 200
from the first part also applied to q in the second. Candidates who did this and then listed all
small possibilities for q were heavily penalised. However, those who gave arguments covering
one, two and three digit numbers could still score nearly full marks if their arguments were
easy to generalise.

Remark

It is conjectured that there are infinitely many primes which satisfy the requirements of the first
part of this question. This claim is a strengthening of the famous ‘Twin Primes’ conjecture
which has been intensively studied for centuries. There has been significant progress since 2013,
but the proof or disproof of this conjecture remains beyond the reach of current mathematical
techniques.

© 2019 UK Mathematics Trust www.ukmt.org.uk 4
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Question 2

A sequence of integers a1,a2,a3, . . . satisfies the relation:

4a2
n+1 − 4anan+1 + a2

n − 1 = 0

for all positive integers n. What are the possible values of a1?

Solution

We start by factorising the expression involving the ai to obtain (2an+1 − an)
2 − 1 = 0.

From here we can either add 1 to both sides and take a square root to find (2an+1 − an) = ±1, or
factorise the difference of two squares to see that (2an+1 − an − 1)(2an+1 − an + 1) = 0.

Either way we have an+1 =
1
2(an ± 1). (This can also be obtained by viewing the equation as a

quadratic in an+1, using the quadratic formula and simplifying.)

If a1 is even then a2 will not be an integer.

If an is odd, then the two possible values of an+1 are consecutive integers. Thus we can choose
an+1 to be an odd integer. In particular, for any odd integer a1 there exists a possible sequence
consisting entirely of odd integers.

Alternative

As before we have an+1 =
1
2(an ± 1).

If an > 1 then an > an+1 ≥ 1 so if a1 is positive, then the terms decrease until they reach 1. If
an < −1 then an < an+1 ≤ −1, so if a1 is negative, then the terms increase until they reach −1.

As an = 2an+1 ± 1 we may construct the sequence in reverse from ak = ±1 back to a1. We
obtain a1 = ±2k−1 ± 2k−2 ± ... ± 21 ± 1 and so a1 must be odd. We can prove by (complete)
induction on the magnitude of a1 that a1 can be any odd number. Suppose we want to construct
a sequence with a1 = 2k + 1 = 2(k + 1) − 1. One of k and k + 1 is an odd number of smaller
magnitude, so, by induction, there is a legal sequence with a1 = k or a1 = k + 1. We may
take this sequence, increase all the subscripts by 1 and insert the desired value of a1 at the
beginning.

Markers’ comments

There were many excellent responses to this question. Both solution strategies outlined above
were used successfully by candidates, though the second was much rarer.

This question also threw up several misconceptions that led to candidates scoring a maximum
of 3 marks. The most common was to assume that, when faced with the two expressions
for an+1, there were then only two ways to generate a sequence, either by repeatedly using
an+1 =

1
2(an+1) or repeatedly using an+1 =

1
2(an−1). Candidates making this mistake generally

went on to show that, if the choice of sign was not allowed to vary within the sequence, the
only possible values of a1 are ±1.
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The second most prevalent misconception that arose was for candidates to assume that
(2an+1 − an)

2 = 1 led to an+1 =
1
2(an + 1) only. It is important for candidates to appreciate that

x2 = 1 may not mean x =
√

1 and it is interesting to note that for this problem such an error
affected the solution set significantly.

Many solutions gave the correct set of values for a1 but still lost a couple of marks, due to a
lack of justification of two important observations. The first of was that a1 could not be even,
which some candidates stated but did not explain and other omitted to mention. The second
related to the fact that the two possible values for an+1, given an odd an, had different parity.
This is a crucial observation needed in order to continue the sequence and some stated it as fact
with no proof.

Some candidates attempted to apply induction once they had expressions for an+1, but many
were unclear about the statement they were attempting to prove. Others attempted to start
with an+1 = ±1 and work backwards, iterating both expressions for an+1 to create a tree of
possible values for a1. These candidates often observed various patterns in their trees and
claimed, without proof, that these patterns continued indefinitely. Such scripts were awarded a
maximum of 3 marks.

Some candidates assumed the terms of the sequence were positive, this was not stated in the
question and led to a deduction of 1 mark.

© 2019 UK Mathematics Trust www.ukmt.org.uk 6
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Question 3

Two circles S1 and S2 are tangent at P. A common tangent, not through P, touches S1 at A
and S2 at B. Points C and D, on S1 and S2 respectively, are outside the triangle APB and
are such that P is on the line CD.
Prove that AC is perpendicular to BD.

Solution

Let AC and BD intersect at X , and let the common tangent at P intersect AB at Y as shown.

Let ∠DCA = γ and ∠BDC = δ. By the alternate segment theorem ∠Y PA = ∠PAY = γ and
∠Y BP = ∠BPY = δ. The angles in triangle BPA sum to 2γ + 2δ so γ + δ = 90◦.

Now looking at the angles in triangle DXC shows that ∠DXC = 90◦ as required.

© 2019 UK Mathematics Trust www.ukmt.org.uk 7
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Alternative

We consider the special case where C′P and PD′ are diameters of the two circles. It is clear
that C′,O1,P,O2 and D′ are collinear, since the radii O1P and O2P are both perpendicular to
the common tangent at P.

The tangent AB is perpendicular to the radii AO1 and BO2, so considering the angles in the
quadrilateral AO1O2B we see that ∠O2O1A + ∠BO2O1 = 180◦. However these are external
angles of the isosceles triangles AO1C′ and BO2D′ so we see see that ∠O1C′A+∠BD′O2 = 90◦.
Considering triangle D′C′X′ shows that ∠C′X′D′ = 90◦.

To prove the result for an arbitrary line CD through P we observe that ∠BDP = ∠BD′P and
∠PCA = ∠PC′A by angles in the same segment, and the result follows.

Markers’ comments

We were pleased to see many excellent solutions to this problem. Most candidates proceeded
along the lines of the first solution. A common variation was to use the quadrilateral O1O2AB
from the second solution and isosceles triangles AO1P and BO2P to show that ∠APB = 90°
and then proceed as in the first solution. Yet another possibility was to start by showing that
∠PO1A + ∠BO2P = 180◦ and then use the fact that the angle at the centre of a circle is twice
the angle at the circumference and therefore ∠PCA + ∠BDP = 90°.

Many of the solutions were very well explained. However, some candidates still produced long
lists of angle calculations with no explanations, and they were penalised for this. It is important
to make it clear at each step which circle theorem, or which triangle is being used, although the
standard GCSE theorems may be used without proof.

A mark was often lost for using the fact that O1PO2 is a straight line without explicitly stating
it; it should be noted that this is only the case because P is the point of tangency of the two
circles. A more serious omission was to claim, without proof, that ∠APB = 90°; this was

© 2019 UK Mathematics Trust www.ukmt.org.uk 8
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heavily penalised.

In geometry problems, candidates often only consider special cases. In this question, a number
of candidates only considered the case when the line CD passes through the centres of the
two circles, which could score the marks available for the first part of the alternative solution.
Some candidates assumed further that the two circles are equal and argued by symmetry; this
approach usually earned no marks.

Remark

The condition that points C and D lie outside triangle APB restricts us to essentially one
diagram, but the result is true more generally. Checking the other cases is fairly straightforward,
but would be a worthwhile exercise.

© 2019 UK Mathematics Trust www.ukmt.org.uk 9

http://\UKMTweb 


British Mathematical Olympiad Round 1 2019 Markers’ report

Question 4

There are 2019 penguins waddling towards their favourite restaurant. As the penguins
arrive, they are handed tickets numbered in ascending order from 1 to 2019, and told to join
the queue. The first penguin starts the queue. For each n > 1 the penguin holding ticket
number n finds the greatest m < n which divides n and enters the queue directly behind the
penguin holding ticket number m. This continues until all 2019 penguins are in the queue.
(a) How many penguins are in front of the penguin with ticket number 2?
(b) What numbers are on the tickets held by the penguins just in front of and just behind

the penguin holding ticket 33?

Solution

We begin by noting that the largest m < n which divides n is equal to n divided by its smallest
factor (other than 1). Clearly this smallest factor must be prime.

For part (a) we claim that the penguins that end up somewhere behind 2 are precisely the larger
powers of 2. Penguin 3 goes in front of 2, so the claim holds when only three penguins have
arrived. Now suppose the claim holds when k − 1 penguins have arrived and consider penguin
k. If k is a power of 2, then its largest proper factor is also a power of 2, so it goes directly
behind that factor and hence somewhere behind 2. If k is prime it goes directly behind 1 and
thus somewhere in front of 2. Finally, if k has smallest prime factor p and another prime factor
q > 2, then k/p is a multiple of q and not a power of 2. Penguin k goes directly behind k/p
and we already know k/p is somewhere in front of 2, so k goes somewhere in front of 2. The
claim implies that when 2019 penguins have arrived, only penguins 4, 8, 16, 32, 64, 128, 256,
512 and 1024 are behind 2. So the remaining 2009 penguins are in front of penguin 2.

For part (b) we first consider the penguins who stand directly in front of penguin 33 at some
stage in the queuing process. When 33 arrives 11 is directly in front of it and 22 is behind it.
The next multiple of 11, namely 44, stands behind 22. Later 55 comes and stands directly in
front of 33. The next penguin to come between 55 and 33 is the next available multiple of 55,
namely 110. Now we forget about penguin 55 and focus on who comes in between 110 and 33.
It is the next available multiple 110, namely 220. Continuing in this way we see that 440, then
880 and finally 1760 occupy the spot directly in front of 33.

Finally we turn to the penguins who stand directly behind 33 at some stage. Their numbers
must be of the form 33k for some k. However, if k > 3 then 11k > 33 so the only numbers that
ever stand directly behind 33 and 33k for k ≤ 3. On arrival, penguin 66 stands directly behind
33, but is later replaced by penguin 99, who stays directly behind 33 from then on.

Markers’ comments

We were pleased with candidates’ willingness to have a go at this problem, and all parts of the
question were found quite accessible.

In part (a), many candidates observed that powers of 2 end up behind penguin 2 by working
out some small cases. However, to score well they needed an argument for why this pattern
continues. In particular, they needed to show both that powers of 2 end up behind 2 and that
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no other penguin does. Some idea of induction is very helpful for stating this formally, but
plenty of candidates also got the marks for a detailed verbal description without using induction
explicitly.

In part (b) a common mistake was thinking that penguin 44 entered in front of 33 and this error
was heavily penalised. Candidates were surprisingly careless in finding the penguin behind 33
and many thought that the answer was 332 or 33 × 31. We would advise checking this kind of
numerical answer carefully using some smaller versions of the same problem. Even candidates
finding the correct answer of 99 could score few marks for this part if they did not explain why
no higher penguin entered behind 33; there were a number of excellent solutions to this part.

© 2019 UK Mathematics Trust www.ukmt.org.uk 11
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Question 5

Six children are evenly spaced around a circular table. Initially, one has a pile of n > 0
sweets in front of them, and the others have nothing. If a child has at least four sweets in
front of them, they may perform the following move: eat one sweet and give one sweet to
each of their immediate neighbours and to the child directly opposite them. An arrangement
is called perfect if there is a sequence of moves which results in each child having the same
number of sweets in front of them. For which values of n is the initial arrangement perfect?

Solution

The initial arrangement is perfect if and only if n is divisible by 28. We number the children
from 1 to 6 around the table, and assume child 1 starts with the sweets.

Suppose n = 28k, for k > 0, and consider the following sequence of moves:

(1) Child 1 makes 7k moves. This leaves all the odd-numbered children without any sweets,
and all of the even-numbered children with 7k sweets.

(2) Each even-numbered child now make k moves. This leaves each child with 3k sweets so
the arrangement is perfect.

It remains to show that if the initial arrangement is perfect, then n must be divisible by 28.
There are various possible approaches.

Call the odd-numbered children ‘Team O’ and the even-numbered children ‘Team E’. Now
consider the difference between the total number of sweets held by Team O and the total number
held by Team E. Initially this difference is n. Once all children have the same number of sweets
this difference is 0, and any move changes the difference by exactly 7. Thus 7 divides n.

Next consider the difference between the number of sweets held by child 1 and the number
held by child 3. At the start this difference is n and at the end this difference is zero. Moves by
children 2, 4, 5 and 6 do not change this difference, while moves by children 1 and 3 change it
by exactly four each time. Thus 4 divides n.

Since n is a multiple of 4 and 7, we conclude that it must be a multiple of 28 as required.

Alternative

Suppose child 1 makes a total of a moves, child 2 makes a total of b moves and so on. After all
moves have been made, the number of sweets each child has are given in the table below. We
are interested in the case when all these quantities are equal.

Child Number of sweets
1 n + b + d + f − 4a
2 a + c + e − 4b
3 b + d + f − 4c
4 a + c + e − 4d
5 b + d + f − 4e
6 a + c + e − 4 f

© 2019 UK Mathematics Trust www.ukmt.org.uk 12
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Equating the number of sweets that children 2, 4 and 6 have:

a + c + e − 4b = a + c + e − 4d = a + c + e − 4 f ,

so

b = d = f . (1)

Similarly, equating the number of sweets that children 1, 3 and 5 have gives:

b + d + f + n − 4a = b + d + f − 4c = b + d + f − 4e

so

e = c and n = 4(a − c). (2)

Now, equating the totals for children 2 and 3 and plugging in (1) and (2) shows that:

a + 2c − 4b = 3b − 4c or a = 7b − 6c. (3)

Plugging (3) into (2) gives n = 28(b − c). .

Alternative

It is tempting to make claims like ‘the order of moves does not matter’ or ‘children 3 and 5
should never make any moves’. These claims are both false, but the ideas can be captured in a
more careful argument.

Suppose there a sequence of moves S showing that the initial arrangement with n sweets is
perfect, and that in that sequence child 1 makes a moves, child 2 makes b and so on. Since
children 2, 4 and 6 start with the same number of sweets and only ever gain them simultaneously,
they must all make the same number of moves, so b = d = e. Similarly, children 3 and 5 gain
sweets simultaneously, so must make the same number moves giving c = e.

Now we claim that the following alternative sequence T of moves can also be used to show
that the initial arrangement is perfect:

(1) Child 1 makes a − c moves.

(2) Children 2, 4 and 6 each make b − c moves.

(3) Children 3 and 5 make no moves.

In sequence T each child makes exactly c fewer moves than they do in S, so each ends up with
c more sweets. However, to actually prove our claim about T , we must also show it is valid
sequence of moves. In particular we must check that a − c and b − c are positive, and that no
child ever has a negative number of sweets.

In sequence S each move by child 3 requires a total of at least four prior moves by children 2, 4
and 6. Thus 3b ≥ 4c or b − c ≥ c

3 which implies that b − c > 0 since even if c = 0 we must
have b > 0. Similarly, each move by child 2 requires at least four prior moves by odd-numbered
children, so a + 2c ≥ 4b which gives a − c ≥ 4b − 3c > 0.

© 2019 UK Mathematics Trust www.ukmt.org.uk 13

http://\UKMTweb 


British Mathematical Olympiad Round 1 2019 Markers’ report

It remains to check that no child ever has a negative number of sweets in T . Once child 1 has
made all their moves, they gain sweets at the same time as child 3. Since they end up with the
same number, child 1 must have exactly zero sweets when they finish their moves, and after
that they only gain sweets. Children 2, 4 and 6 gain sweets steadily until they start making
moves. After that they lose sweets until they reach the (positive) number finally held by each
child. Children 3 and 5 never lose any sweets, so the claim is established.

We have already observed that n − 4(a − c) must equal zero. Also, at the end of sequence T

each child has 3(b − c) sweets and the total number of moves made was (a − c) + 3(b − c).
Thus n = 6 × 3(b − c) + (a − c) + 3(b − c) so 3

4n = 21(b − c) giving n = 28(b − c).

Markers’ comments

Lots of students did a good job showing that a configuration where one child starts with 28
sweets is perfect, and indeed that the same was true if the starting number was a multiple of 28.
Unfortunately, a substantial number of students asserted that these were the only possibilities
because their strategy that worked when n is a multiple of 28 would not work if n were not a
multiple of 28. These students failed to consider why no sequence of moves would allow all
children to end up with the same number of sweets from the initial configuration.

There were two approaches that students usually managed to see through:

• Setting up algebra as in the first alternative solution, and calmly working through it;

• Trying some examples and realising that the “odd” and “even” teams of the official
solution are useful.

Unfortunately, a large number of students tried to argue that the order of moves is irrelevant.
If this is assumed, the algebra can be simplified, but proving that this assumption does not
eliminate any perfect initial configurations is quite tough, so these students missed the crux of
the problem. Correct solutions along the lines of the second alternative were extremely rare.

Remark

The numbers 6 and 28 are both called perfect numbers since they are equal to the sum of their
proper divisors. Euler showed that every even perfect number must be of the form 2m−1(2m − 1)
where 2m − 1 is a (Mersenne) prime. However, it is not currently known whether there are
infinitely many perfect numbers, or indeed whether any odd perfect numbers exist.
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Question 6

A function f is called good if it assigns an integer value f (m,n) to every ordered pair of
integers (m,n) in such a way that for every pair of integers (m,n) we have:

2 f (m,n) = f (m − n,n − m) + m + n = f (m + 1,n) + f (m,n + 1) − 1.

Find all good functions.

Solution

We write L, M and R for the left, middle and right parts of the displayed equations.

Note first that, by substituting m = n = 0 into L =M, we get f (0,0) = 0.

Now, writing g(m) for f (m,−m), the equation L =M gives f (m,n) = 1
2(g(m − n) + m + n).

Making this substitution on equation L = R gives

g(m − n) + m + n =
1
2(g(m + 1 − n) + m + 1 + n) + 1

2(g(m − n − 1) + m + n + 1) − 1,

and taking n = 0 then gives

g(m) + m = 1
2(g(m + 1) + m + 1) + 1

2(g(m − 1) + m + 1) − 1,

which simplifies to g(m) = 1
2(g(m + 1) + g(m − 1)).

This says that g(m) is linear; since we determined at the start that g(0) = 0, we get g(m) = am,
and hence f (m,n) = 1

2((1 + a)m + (1 − a)n). By taking m = 1,n = 0, we see that a should be
odd; taking a = 2b+ 1 gives f (m,n) = (b+ 1)m − bn. It can readily be checked that this works
for any value of b.

Alternative

Using L =M for f (m + 1,n + 1) and for f (m,n) gives

2 f (m + 1,n + 1) = f (m − n,n − m) + m + n + 2,
2 f (m,n) = f (m − n,n − m) + m + n.

Hence f (m + 1,n + 1) = f (m,n) + 1, and so, by induction in both directions, we have
f (m,n) = f (m − n,0) + n.

Substituting this into the original equations, and subtracting 2n from all sides, gives us

2 f (m − n,0) = f (2m − 2n,0) = f (m − n + 1,0) + f (m − n − 1,0).

Writing p for m − n, we have

2 f (p,0) = f (2p,0) = f (p + 1,0) + f (p − 1,0).

From these we deduce (similarly to Solution 1) that f (p,0) = bp for some b, and this gives
f (m,n) = b(m − n) + n; it can readily be checked that all such solutions work.
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http://\UKMTweb 


British Mathematical Olympiad Round 1 2019 Markers’ report

Markers’ comments

This question was not attempted by many students; among the attempts we saw, many weren’t
successful. We suspect that most successful students mixed the following three strategies,
allowing their experiences with each to inform their attempts at the others:

(1) Using small cases of the recurrence relation to try to deduce things about f (m,n) for m and
n small integers. (Looking out for helpful things is easier if one has attempted strategies
(2) and (3).)

(2) Attempting clever substitutions, to try to say helpful general things about the function.
(Precisely what things are helpful can best be told by attempting strategies (1) and (3).)

(3) Attempting to think of solutions. (Indeed, trying solutions like f (m,n) = am + bn+ c may
not come naturally at first, but knowing which solutions to try does come naturally if one
has made attempts at strategies (1) and (2).)

In contrast, students who focused their attention on only one of these three strategies were
likely to grind to a halt sooner or later.
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