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These solutions are intended as outlines. In particular, they do not represent the full range of
approaches possible, nor the difficulties which lie in finding them.
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1. A positive integer 𝑛 is called good if there is a set of divisors of 𝑛 whose members sum
to 𝑛 and include 1. Prove that every positive integer has a multiple which is good.

Solution

Firstly we show that if 𝑚 > 1 is good, then so is 2𝑚. This is true since some proper divisors of
𝑚, including 1 (and hence not including 𝑚 itself), sum to 𝑚; if we consider all these together
with 𝑚, they will all be factors of 2𝑚 which sum to 2𝑚.

This means that it suffices to prove the claim for odd numbers. The claim holds for 1 since
good numbers exist (such as 6, which is 1 + 2 + 3, for example).

If 𝑎 > 1 is odd and 𝑛 = 2𝑘𝑎 for some 𝑘 , then 𝑎 + 2𝑎 + 4𝑎 + · · · + 2𝑘−1𝑎 = (2𝑘 − 1)𝑎 = 𝑛 − 𝑎
which is close to 𝑛. This value of 𝑛 will be good if we can find some other factors of 𝑛, including
1, which sum to 𝑎.

To do this, we write 𝑎 as a sum of powers of 2, including 1, by writing 𝑎 in binary, and then
choose 𝑘 to be large enough for all those powers of 2 to be factors of 𝑛. (We may take 𝑘 to be
⌈log2(𝑎)⌉, the smallest integer greater than or equal to the base-2 logarithm of 𝑎.) None of
these powers of 2 are multiples of 𝑎 so there is no risk that we are using the same factor of 𝑛
twice.

Alternative

A variation on the proof above can be obtained by instead considering 2𝑚−1(2𝑚 − 1). This is
good for any 𝑚 ≥ 3, since

2𝑚−1(2𝑚 − 1) = 1 + 2 + 22 + · · · + 2𝑚−1 + (2𝑚 − 1) + 2(2𝑚 − 1) + · · · + 2𝑚−2(2𝑚 − 1).

It can be shown using the Fermat-Euler theorem that any number 𝑛 is a factor of a number of
this form. Indeed, suppose 𝑛 = 2𝑘𝑎, with 𝑎 odd. Then the Fermat-Euler theorem tells us that
2𝑐𝜑(𝑎) − 1 is a multiple of 𝑎 for any positive integer 𝑐 (where 𝜑(𝑎) is the number of numbers
between 1 and 𝑎 which are coprime to 𝑎). This means that if we choose 𝑐 such that 𝑘 < 𝑐𝜑(𝑎),
then we will have 𝑛 a factor of 2𝑐𝜑(𝑎)−1(2𝑐𝜑(𝑎) − 1)

Alternative

We show that the numbers 𝑛! are all good for all 𝑛 ≥ 3, which is enough to solve the problem
since 𝑛 is always a factor of 𝑛!. We proceed by induction, using 3! = 6 = 3 + 2 + 1 for the base
case. For the inductive step, suppose that

𝑛! = 1 +
∑
𝑖

𝑎𝑖

where 𝑎𝑖 are distinct factors of 𝑛! other than 1. Then we have

(𝑛 + 1)! = 1 + 𝑛 +
∑
𝑖

(𝑛 + 1)𝑎𝑖,

and all these factors are different, so (𝑛 + 1)! is also good.
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2. Eliza has a large collection of 𝑎 × 𝑎 and 𝑏 × 𝑏 tiles where 𝑎 and 𝑏 are positive integers.
She arranges some of these tiles, without overlaps, to form a square of side length 𝑛.
Prove that she can cover another square of side length 𝑛 using only one of her two types
of tile.

Solution

Number the rows of the 𝑛 × 𝑛 square from 1 to 𝑛.

We say that a cell is special if it is in the top row of a 𝑏 × 𝑏 square.

In any row, the number of cells that are in a 𝑏 × 𝑏 square is congruent to 𝑛, modulo 𝑎. Since
each special cell has 𝑏 − 1 cells in the 𝑏 − 1 rows underneath it, we can see by induction that
the number of special cells in rows 1, 𝑏 + 1, 2𝑏 + 1, . . . is congruent to 𝑛 modulo 𝑎, and the
number of special cells in rows with other numbers is congruent to 0.

Now, the cells in 𝑏 × 𝑏 squares in row 𝑛 are all in squares whose top cells are in row 𝑛 − 𝑏 + 1,
and hence the number of special cells in row 𝑛 − 𝑏 + 1 is congruent to 𝑛 (modulo 𝑎). Hence
either 𝑛 ≡ 0 (modulo 𝑎), in which case 𝑎 is a multiple of 𝑛, or 𝑛 − 𝑏 + 1 is of the form 𝑟𝑏 + 1, in
which case 𝑏 is a multiple of 𝑛.

Alternative

Number the rows of the square to be tiled from 1 to 𝑛 and suppose that 𝑎 does not divide 𝑛.

If the row number is congruent to 1 modulo 𝑎 write +1 in every cell in that row, and if the row
number is congruent to 0 modulo 𝑎 write −1 in every cell in that row. Write 0 in every other
cell.

The sum of all the entries on the board is exactly 𝑛. The entries covered by an 𝑎 × 𝑎 tile sum to
0, and the those covered by a 𝑏 × 𝑏 tile sum to a multiple of 𝑏. Thus the total of the entries
covered by any collection of tiles is congruent to zero modulo 𝑏, so 𝑏 |𝑛 as required.

Alternative

Suppose that 𝑛 is divisible by neither 𝑎 nor 𝑏. Imagine tiling plane with 𝑎 × 𝑏 rectangles and
colour in the four corners of each rectangle as shown (for 𝑎 = 3, 𝑏 = 4, 𝑛 = 10).

More precisely, we shade the cell with coordinates (𝑥, 𝑦) (for 1 ≤ 𝑥, 𝑦 ≤ 𝑛) just when 𝑎 | 𝑥 or
𝑥 − 1, and 𝑏 | 𝑦 or 𝑦 − 1.
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It is easy to verify (using the periodicity of the colouring) that each 𝑎 × 𝑎 or 𝑏 × 𝑏 tile covers
an even number of shaded cells, but that there are an odd number of shaded cells in total. Thus
the 𝑐 × 𝑐 square cannot be tiled with 𝑎 × 𝑎 and 𝑏 × 𝑏 tiles, as desired.

Alternative

Stretch the board by 1/𝑎 in one direction and by 1/𝑏 in the other. Now each of Eliza’s tiles has
one side equal to 1. A theorem of De Bruĳn now implies that the whole board must have an
integer side length, which, after reversing the stretches, implies the result.

Remark

The second alternative opens up many possible approaches, since De Bruĳn’s result has many
proofs.

For example we can divide the original board into rectangles whose dimensions are 𝑎/2 and
𝑏/2 and apply a standard chessboard colouring. Each of Eliza’s tiles covers an equal black and
white area, but it can be checked that the board only consists of equal black and white areas if
its side is divisible by either 𝑎 or 𝑏.
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3. Let 𝐴𝐵𝐶 be a triangle with 𝐴𝐵 > 𝐴𝐶. Its circumcircle is Γ and its incentre is 𝐼. Let 𝐷
be the contact point of the incircle of 𝐴𝐵𝐶 with 𝐵𝐶.
Let 𝐾 be the point on Γ such that ∠𝐴𝐾𝐼 is a right angle.
Prove that 𝐴𝐼 and 𝐾𝐷 meet on Γ.

Solution

The line 𝐴𝐼 meets the circumcircle Γ at the midpoint 𝑀 of the minor arc 𝐵𝐶. We produce 𝑀𝐷
to cut the circumcircle again at 𝐾′. We will show that ∠𝐴𝐾′𝐼 is a right-angle and so 𝐾′ = 𝐾 .

Angle in the same segment gives ∠𝑀𝐾′𝐵 = ∠𝐶𝐵𝑀 = 𝐴
2 and so 𝑀𝐵 is tangent to circle

𝐵𝐷𝐾′ at 𝐵, and the tangent-secant theorem applies so 𝑀𝐵2 = 𝑀𝐷.𝑀𝐾′. We also know that
𝑀𝐵 = 𝑀𝐶 = 𝑀𝐼, and substituting 𝑀𝐼 into this relation, the converse of the tangent-secant
theorem tells us that 𝑀𝐼 is tangent to the undrawn circle 𝐷𝐼𝐾′ at 𝐼. Now ∠𝐷𝐼𝑀 + ∠𝑀𝐼𝐵 =

∠𝐷𝐼𝐵 = 90◦− 𝐵
2 . Therefore ∠𝐷𝐼𝑀 = 𝐵−𝐶

2 (we have just used the fact that ∠𝐵 < ∠𝐶. Putting all
this together, we find that ∠𝐴𝐾′𝐼 = ∠𝐴𝐾′𝐵− ∠𝐼𝐾′𝑀 − ∠𝑀𝐾′𝐵 = ∠𝐴𝐶𝐵− ∠𝑀𝐼𝐷 − ∠𝑀𝐴𝐵 =

180◦ − 𝐶 − 𝐵−𝐶
2 − 𝐴

2 = 180◦ − 𝐴+𝐵+𝐶
2 = 90◦ as required.

Alternative

We know that 𝐴𝐼 meets the circumcircle again at 𝑀, the midpoint of the arc 𝐵𝐶. Since Γ is
also the circumcircle of △𝐾𝐵𝐶, we know that 𝐾𝐷 also passes through 𝑀 precisely if 𝐾𝐷 is
the angle bisector of ∠𝐵𝐾𝐶.

Let 𝐸, 𝐹 be the contact points of the incircle with 𝐶𝐴, 𝐴𝐵, respectively, so 𝐴𝐹𝐼𝐸𝐾 is cyclic
(by the converse of Thales’s theorem). Now 𝐾 , the intersection of Γ and circle 𝐴𝐹𝐸𝐾 , is the
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centre of spiral similarity which carries the directed segment 𝐹𝐵 to 𝐸𝐶. Therefore

𝐾𝐵

𝐾𝐶
=
𝐵𝐹

𝐶𝐸
=
𝐵𝐷

𝐷𝐶

since tangents from a point to a circle have the same length. Now, by the converse of the angle
bisector theorem, 𝐾𝐷 is the angle bisector of angle ∠𝐶𝐾𝐵.

Alternative

It is possible to adjust the approach above so as to not to require knowledge of the spiral
similarity theorem. One way to proceed is by chasing angles to prove that △𝐾𝐹𝐵 and △𝐾𝐸𝐶
are similar.
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4. Matthew writes down a sequence 𝑎1, 𝑎2, 𝑎3, . . . of positive integers. Each 𝑎𝑛 is the
smallest positive integer, different from all previous terms in the sequence, such that the
mean of the terms 𝑎1, 𝑎2, . . . , 𝑎𝑛 is an integer. Prove that the sequence defined by 𝑎𝑖 − 𝑖
for 𝑖 = 1, 2, 3, . . . contains every integer exactly once.

Solution

Write 𝑏𝑖 = 𝑎𝑖− 𝑖. We prove by induction that 𝑏1, . . . , 𝑏𝑛 consists of consecutive integers in some
order. Let 𝐵𝑛 = max{𝑏1, . . . , 𝑏𝑛}. Since 𝑏1 = 0, we have 𝐵𝑛 < 𝑛. The mean of the sequence
𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑛+2+𝐵𝑛 is an integer, as it is the sum of the two sequences 1, 2, . . . , 𝑛, 𝑛+1 and
𝑏1, 𝑏2, . . . , 𝑏𝑛, 𝐵𝑛+1 of consecutive integers, and the mean of any sequence of 𝑛+1 consecutive
integers is an integer (respectively a half-integer) according as 𝑛 is even (respectively odd). It
follows that 𝑎𝑛+1 is congruent to 𝑛 + 2 + 𝐵𝑛 mod 𝑛 + 1. Since 𝑛 + 2 + 𝐵𝑛 is greater than any of
𝑎1, . . . , 𝑎𝑛 (as 𝑎𝑖 = 𝑖 + 𝑏𝑖 with 𝑖 < 𝑛 + 1 and 𝑏𝑖 < 𝐵𝑛 + 1, we know that 𝑎𝑛+1 ≤ 𝑛 + 2 + 𝐵𝑛, and
hence 𝑎𝑛+1 is equal to 𝑛 + 2 + 𝐵𝑛 or 1 + 𝐵𝑛 (as 𝐵𝑛 − 𝑛 < 0). Thus 𝑏𝑛+1 is equal to 𝐵𝑛 + 1 or
𝐵𝑛 − 𝑛, and the integers 𝑏1, . . . , 𝑏𝑛+1 are consecutive. This completes the induction. It follows
that every integer appears in the sequence 𝑏1, 𝑏2, . . . at most once.

To complete the problem, we need only check that 𝑏𝑛 > 0 infinitely often and also that 𝑏𝑛 < 0
infinitely often. For the former, we simply note that if 𝑏𝑛 < 0, then we cannot also have
𝑏𝑛+1 < 0. Indeed, since 0 = 𝑏1 is among the consecutive integers 𝑏1, . . . , 𝑏𝑛, the only way we
could have 𝑏𝑛+1 < 0 would be if 𝑏𝑛+1 = 𝑏𝑛 − 1, in which case 𝑎𝑛+1 = 𝑎𝑛, which is not possible.
For the latter, suppose for contradiction that there is some 𝑛0 such that 𝑏𝑛 > 0 for all 𝑛 > 𝑛0.
It follows that for 𝑛 > 𝑛0 we have 𝑏𝑛 = 𝑛 − 𝛿, and hence 𝑎𝑛 = 2𝑛 − 𝛿, for some 𝛿. Since the
mean of 𝑎1, . . . , 𝑎𝑛−1, 𝑛 − 𝛿 is also an integer, it follows that 𝑛 − 𝛿 must appear in the sequence
𝑎1, . . . , 𝑎𝑛−1 for all 𝑛 > 𝑛0. If in addition 𝑛 is odd, we cannot have 𝑛 − 𝛿 = 𝑎𝑛′ = 2𝑛′ − 𝛿 for an
integer 𝑛′ > 𝑛0, and hence 𝑛 − 𝛿 must even appear in the sequence 𝑎1, . . . , 𝑎𝑛0 . But there are
infinitely many odd integers 𝑛 > 𝑛0 and only finitely many integers in the range 𝑎1, . . . , 𝑎𝑛0 ,
which is impossible.

Alternative

Let 𝜏 be the Golden Ratio, so 1/𝜏 = 𝜏 − 1. Define 𝑚(𝑛) to be the ceiling of 𝑛/𝜏. If
𝑚(𝑛) = 𝑚(𝑛 − 1) then define 𝑎(𝑛) = 𝑚(𝑛 − 1) (case 1). If 𝑚(𝑛) = 𝑚(𝑛 − 1) + 1 then
define 𝑎(𝑛) = 𝑚(𝑛 − 1) + 𝑛 (case 2). Then 𝑚(𝑛) is the mean of 𝑎(1), 𝑎(2), . . . , 𝑎(𝑛) because
𝑎(𝑛) = 𝑚(𝑛 − 1) + 𝑘𝑛 and 𝑚(𝑛) = 𝑚(𝑛 − 1) + 𝑘 always, where 𝑘 is an integer. Case 1 is
𝑎 − 1 < (𝑛 − 1)/𝜏 < 𝑛/𝜏 < 𝑎, which rearranges to (𝑎 − 1)/𝜏 < 𝑛 − 𝑎 < 𝑎/𝜏. Case 2 is
(𝑛−1)/𝜏 < 𝑎−𝑛 < 𝑛/𝜏, which rearranges to 𝑛−1 < (𝑎−1)/𝜏 < 𝑎/𝜏 < 𝑛. It follows that 𝑎(𝑛) is
self-inverse, in particular bĳective. Note that 𝑎(𝑚(𝑛−1)) < 𝜏𝑚(𝑛−1) < 𝜏((𝑛−1)/𝜏+1) < 𝑛+1,
so 𝑚(𝑛 − 1) is used by position 𝑛. So if we are in case 2, 𝑚(𝑛 − 1) has been used previously.
So we are always using the smallest unused 𝑚(𝑛 − 1) + 𝑘𝑛 (since 𝑘 < 0 is impossible). Hence
our sequence is the same as the one in the question. Case 2 has 𝑎(𝑛) − 𝑛 equal to each positive
integer once, as 𝑛 ranges over all positive integers. Case 1 has 𝑎(𝑛) − 𝑛 equal to each negative
integer once, as 𝑛 ranges over all positive integers. Since 𝑎(1) − 1 = 0, that completes the
problem.
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