Problem 4. Points P and Q lie on side BC of acute-angled triangle ABC so that $\angle PAB = \angle BCA$ and $\angle CAQ = \angle ABC$. Points M and N lie on lines AP and AQ, respectively, such that P is the midpoint of AM, and Q is the midpoint of AN. Prove that lines BM and CN intersect on the circumcircle of triangle ABC.

Problem 5. For each positive integer n, the Bank of Cape Town issues coins of denomination $\frac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most $99 + \frac{1}{2}$, prove that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most 1.

Problem 6. A set of lines in the plane is in general position if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its *finite regions*. Prove that for all sufficiently large n, in any set of n lines in general position it is possible to colour at least \sqrt{n} of the lines blue in such a way that none of its finite regions has a completely blue boundary.

Note: Results with \sqrt{n} replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant c.