THE 3RD ROMANIAN MASTER OF MATHEMATICS COMPETITION

DAY 1: FRIDAY, FEBRUARY 26, 2010, BUCHAREST

Language: English

Problem 1. For a finite non-empty set of primes P, let $m(P)$ be the largest possible number of consecutive positive integers, each of which is divisible by at least one member of P.
(i) Show that $|P| \leq m(P)$, with equality if and only if $\min (P)>|P|$;
(ii) Show that $m(P)<(|P|+1)\left(2^{|P|}-1\right)$.
(The number $|P|$ is the size of the set P.)

Problem 2. For each positive integer n, find the largest real number C_{n} with the following property. Given any n real-valued functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ defined on the closed interval $0 \leq x \leq 1$, one can find numbers $x_{1}, x_{2}, \ldots, x_{n}$, such that $0 \leq x_{i} \leq 1$, satisfying

$$
\left|f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right)-x_{1} x_{2} \cdots x_{n}\right| \geq C_{n}
$$

Problem 3. Let $A_{1} A_{2} A_{3} A_{4}$ be a convex quadrilateral with no pair of parallel sides. For each $i=1,2,3,4$, define ω_{i} to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1} A_{i}, A_{i} A_{i+1}$ and $A_{i+1} A_{i+2}$ (indices are considered modulo 4 , so $A_{0}=A_{4}, A_{5}=A_{1}$ and $A_{6}=A_{2}$). Let T_{i} be the point of tangency of ω_{i} with the side $A_{i} A_{i+1}$. Prove that the lines $A_{1} A_{2}, A_{3} A_{4}$ and $T_{2} T_{4}$ are concurrent if and only if the lines $A_{2} A_{3}, A_{4} A_{1}$ and $T_{1} T_{3}$ are concurrent.

Each of the three problems is worth 7 points.
Time allowed: $4 \frac{1}{2}$ hours.

