THE 3RD ROMANIAN MASTER OF MATHEMATICS COMPETITION

DAY 1: FRIDAY, FEBRUARY 26, 2010, BUCHAREST

Language: English

Problem 1. For a finite non-empty set of primes P, let m(P) be the largest possible number of consecutive positive integers, each of which is divisible by at least one member of P.

(i) Show that $|P| \le m(P)$, with equality if and only if $\min(P) > |P|$;

(ii) Show that $m(P) < (|P|+1)(2^{|\bar{P}|}-1)$.

(The number |P| is the size of the set P.)

Problem 2. For each positive integer *n*, find the largest real number C_n with the following property. Given any *n* real-valued functions $f_1(x), f_2(x), \ldots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers x_1, x_2, \ldots, x_n , such that $0 \le x_i \le 1$, satisfying

$$|f_1(x_1) + f_2(x_2) + \dots + f_n(x_n) - x_1 x_2 \dots x_n| \ge C_n.$$

Problem 3. Let $A_1A_2A_3A_4$ be a convex quadrilateral with no pair of parallel sides. For each i = 1, 2, 3, 4, define ω_i to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i$, A_iA_{i+1} and $A_{i+1}A_{i+2}$ (indices are considered modulo 4, so $A_0 = A_4$, $A_5 = A_1$ and $A_6 = A_2$). Let T_i be the point of tangency of ω_i with the side A_iA_{i+1} . Prove that the lines A_1A_2, A_3A_4 and T_2T_4 are concurrent if and only if the lines A_2A_3 , A_4A_1 and T_1T_3 are concurrent.

Each of the three problems is worth 7 points. Time allowed: $4\frac{1}{2}$ hours.