THE 3RD ROMANIAN MASTER OF MATHEMATICS COMPETITION

DAY 2: SATURDAY, FEBRUARY 27, 2010, BUCHAREST

Language: English

Problem 4. Determine whether there exist a polynomial $f(x_1, x_2)$ in two variables, with integer coefficients, and two points $A = (a_1, a_2)$ and $B = (b_1, b_2)$ in the plane, satisfying all the following conditions:

- (i) A is an integer point (i.e., a_1 and a_2 are integers);
- (ii) $|a_1 b_1| + |a_2 b_2| = 2010;$
- (iii) $f(n_1, n_2) > f(a_1, a_2)$, for all integer points (n_1, n_2) in the plane other than A;
- (iv) $f(x_1, x_2) > f(b_1, b_2)$, for all points (x_1, x_2) in the plane other than *B*.

Problem 5. Let *n* be a given positive integer. Say that a set *K* of points with integer coordinates in the plane is *connected* if for every pair of points $R, S \in K$, there exist a positive integer ℓ and a sequence $R = T_0, T_1, \ldots, T_{\ell} = S$ of points in *K*, where each T_i is distance 1 away from T_{i+1} . For such a set *K*, we define the set of vectors

$$\Delta(K) = \{ \overrightarrow{RS} \mid R, S \in K \}.$$

What is the maximum value of $|\Delta(K)|$ over all connected sets *K* of 2n + 1 points with integer coordinates in the plane?

Problem 6. Given a polynomial f(x) with rational coefficients, of degree $d \ge 2$, we define the sequence of sets $f^0(\mathbb{Q}), f^1(\mathbb{Q}), \dots$ by $f^0(\mathbb{Q}) = \mathbb{Q}$ and $f^{n+1}(\mathbb{Q}) = f(f^n(\mathbb{Q}))$ for $n \ge 0$. (Given a set *S*, we write f(S) for the set $\{f(x) \mid x \in S\}$.)

Let $f^{\omega}(\mathbb{Q}) = \bigcap_{n=0}^{\infty} f^n(\mathbb{Q})$ be the set of numbers that are in all of the sets $f^n(\mathbb{Q})$. Prove that $f^{\omega}(\mathbb{Q})$ is a finite set.

Each of the three problems is worth 7 points. Time allowed: $4\frac{1}{2}$ hours.