THE 3RD ROMANIAN MASTER OF MATHEMATICS COMPETITION

DAY 2: SATURDAY, FEBRUARY 27, 2010, BUCHAREST

Language: English

Problem 4. Determine whether there exist a polynomial $f\left(x_{1}, x_{2}\right)$ in two variables, with integer coefficients, and two points $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$ in the plane, satisfying all the following conditions:
(i) A is an integer point (i.e., a_{1} and a_{2} are integers);
(ii) $\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|=2010$;
(iii) $f\left(n_{1}, n_{2}\right)>f\left(a_{1}, a_{2}\right)$, for all integer points $\left(n_{1}, n_{2}\right)$ in the plane other than A;
(iv) $f\left(x_{1}, x_{2}\right)>f\left(b_{1}, b_{2}\right)$, for all points $\left(x_{1}, x_{2}\right)$ in the plane other than B.

Problem 5. Let n be a given positive integer. Say that a set K of points with integer coordinates in the plane is connected if for every pair of points $R, S \in K$, there exist a positive integer ℓ and a sequence $R=T_{0}, T_{1}, \ldots, T_{\ell}=S$ of points in K, where each T_{i} is distance 1 away from T_{i+1}. For such a set K, we define the set of vectors

$$
\Delta(K)=\{\overrightarrow{R S} \mid R, S \in K\} .
$$

What is the maximum value of $|\Delta(K)|$ over all connected sets K of $2 n+1$ points with integer coordinates in the plane?

Problem 6. Given a polynomial $f(x)$ with rational coefficients, of degree $d \geq 2$, we define the sequence of sets $f^{0}(\mathbb{Q}), f^{1}(\mathbb{Q}), \ldots$ by $f^{0}(\mathbb{Q})=\mathbb{Q}$ and $f^{n+1}(\mathbb{Q})=$ $f\left(f^{n}(\mathbb{Q})\right.$) for $n \geq 0$. (Given a set S, we write $f(S)$ for the set $\{f(x) \mid x \in S\}$.)

Let $f^{\omega}(\mathbb{Q})=\bigcap_{n=0}^{\infty} f^{n}(\mathbb{Q})$ be the set of numbers that are in all of the sets $f^{n}(\mathbb{Q})$. Prove that $f^{\omega}(\mathbb{Q})$ is a finite set.

Each of the three problems is worth 7 points.
Time allowed: $4 \frac{1}{2}$ hours.

