Problem 1. Given a finite number of boys and girls, a sociable set of boys is a set of boys such that every girl knows at least one boy in that set; and a sociable set of girls is a set of girls such that every boy knows at least one girl in that set. Prove that the number of sociable sets of boys and the number of sociable sets of girls have the same parity. (Acquaintance is assumed to be mutual.)

Problem 2. Given a non-isosceles triangle $A B C$, let D, E, and F denote the midpoints of the sides $B C, C A$, and $A B$ respectively. The circle $B C F$ and the line $B E$ meet again at P, and the circle $A B E$ and the line $A D$ meet again at Q. Finally, the lines $D P$ and $F Q$ meet at R. Prove that the centroid G of the triangle $A B C$ lies on the circle $P Q R$.

Problem 3. Each positive integer is coloured red or blue. A function f from the set of positive integers to itself has the following two properties:
(a) if $x \leq y$, then $f(x) \leq f(y)$; and
(b) if x, y and z are (not necessarily distinct) positive integers of the same colour and $x+y=z$, then $f(x)+f(y)=f(z)$.

Prove that there exists a positive number a such that $f(x) \leq a x$ for all positive integers x.

Each of the three problems is worth 7 points.
Time allowed $4 \frac{1}{2}$ hours.

